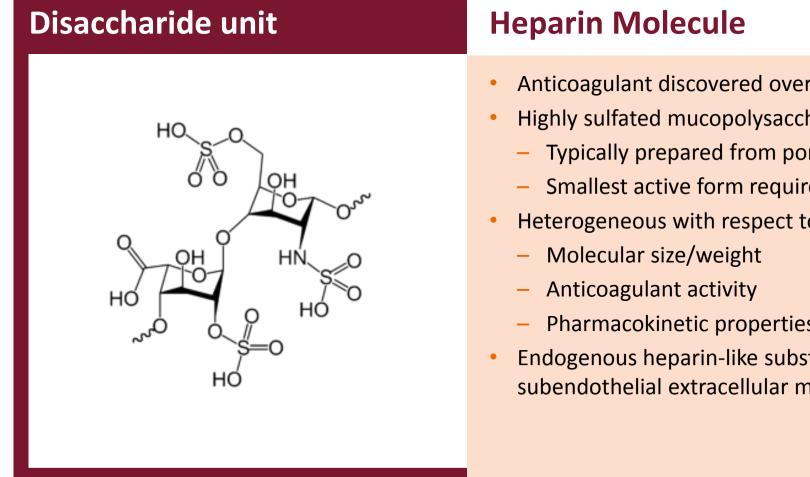


Heparin Monitor with Confidence

Sandy Gardner, BS MT(ASCP) Hemostasis Reagent Marketing Manager

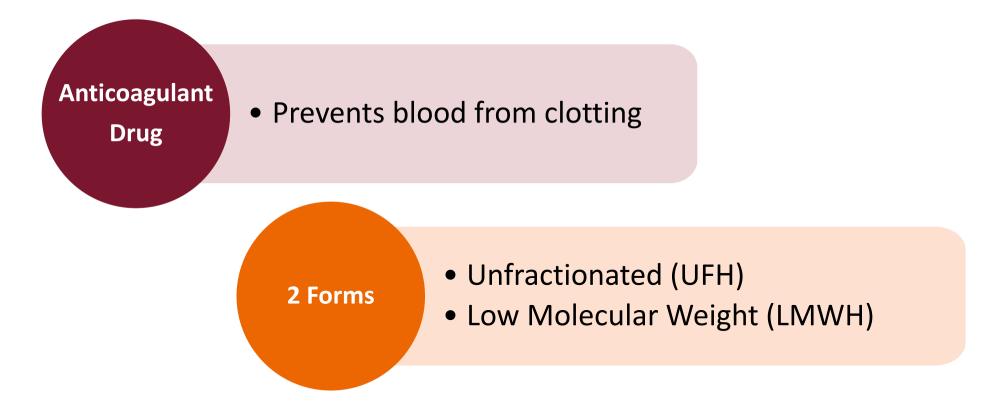
Heparin: Monitor with Confidence



What is Heparin?

Unrestricted © Siemens Healthcare Diagnostics Inc., 2017

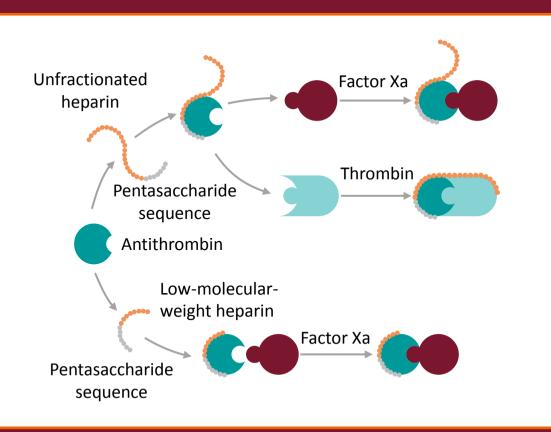
Heparin: Background Information



- Anticoagulant discovered over 90 years ago by McLean, et al
- Highly sulfated mucopolysaccharide
 - Typically prepared from porcine or bovine gut mucosa
 - Smallest active form requires 5 saccharide units
- Heterogeneous with respect to:

- Pharmacokinetic properties
- Endogenous heparin-like substances are present in the subendothelial extracellular matrix

CHEST, Antithrombotic Therapy and Prevention of Thrombosis, 9th ED:ACCP Guidelines



A91LD-HHS-171565-S1-4A00

Heparin: Mechanism of Action

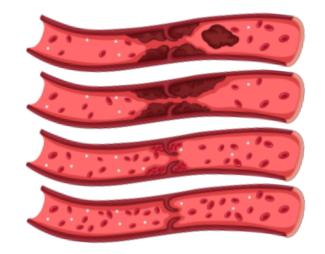
Clotting Enzyme Inactivation

- Antithrombin (AT) inhibits FIIa, IXa, Xa, XIa, XIIa to regulate clotting, *primarily FIIa and FXa*
- Heparin binds to AT causing a change in shape that increases the effectiveness of AT inhibition
- 1000 2000 x increase in AT ability to inhibit
- AT binding to clotting enzymes irreversibly inactivates them
- Heparin dissociates itself from AT and is reused.

Garcia DA, et al. Chest. 2012;141(2 Suppl): e25S. CHEST, Antithrombotic Therapy and Prevention of Theombosis, 9th ed: ACCP Medscape, Aug 23, 2017; Heparins: Clinical Use & Laboratory Monitoring; Maureane Hoffman, MD, PhDHS-171565-S1-4A00

Clinical Uses of Heparin Hospitalized Therapy

- Therapy deep vein thrombosis (DVT), lung embolism (PE)
 - ✓ UFH treatment \$3,476.22 / patient
 - LMW treatment \$3,056.42 / patient
- Prevention of thromboembolic events, e.g., post surgery, cancer patients, critically ill
- Anticoagulation during hemodialysis or extracorporeal circulation (blood outside body)


UFH = Unfractionated Heparin

LMWH = low-molecular-weight heparin

UFH, LMWH

UFH, LMWH

UFH

A91LD-HHS-171565-S1-4A00

Heparin Anti-Xa Testing Target Population: LWMH Therapy Patients Who Should Be Monitored

- Pregnant women
- Infants and children
- Patients with kidney disease
- Patients at high risk for bleeding or recurrences
- Very obese or very underweight patients

Laboratories need assay available for these patients

How is Heparin Monitored? Why is the Heparin Anti-Xa Assay an improvement over the APTT?

Unrestricted © Siemens Healthcare Diagnostics Inc., 2017

Current Status Unfractionated Heparin Monitoring

APTT primary assay for monitoring

- ~15M 26M test per year (~30 50% of total APTT orders)
- limitations for predicting adequacy of anticoagulation
- cannot assay LMWH levels
- difficult for laboratory to validate therapeutic range with each reagent lot / new analyzer

Low Molecular Weight replacing Unfractionated Heparin

- no routine monitoring
- select patients may require monitoring
- cannot be monitored with APTT
- use of UFH will not go away entirely

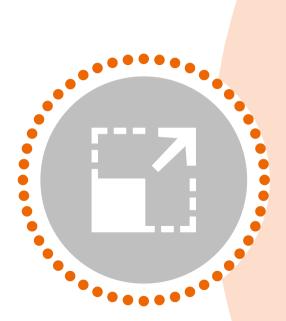
Heparin Anti-Xa assay alternative

- ~3.4M test per year
- better measurement of UFH concentration
- better workflow and outcomes
- required for LMW Heparin
- can be used for new oral Direct Anti-Xa anticoagulants
- interest in adding Heparin Anti-Xa growing

% hospitals considering adding Heparin Anti-Xa					
2011	2012	2013	2014	2015	2016
34.9	45.4	46.0	46.7	54.4	55.4

Evolution of Methods for Establishing APTT UFH Therapeutic Range

APTT: traditional method (1.5–2.5 x control)	In vitro heparin dose- response curve	Ex vivo heparin therapeutic range using APTT correlation vs. anti-Xa assay
 1970's retrospective study Clinical relevance uncertain as range was not confirmed with randomized clinical trials Does not consider differences in reagents and instruments 	 Normal plasma spiked with UFH Not recommended by CAP; over- estimates when compared with anti-Xa levels in patients Molecular distribution in vivo ≠ in vitro 	CAP recommended method
CAP: College of American Pathologists		Linrestricted @ Sigmens Healthcare Diagnostics Inc. 2017


Garcia DA, et al. Chest. 2012;141(2 Suppl):e28S-29S.

`*****••••

Unrestricted © Siemens Healthcare Diagnostics Inc., 2017

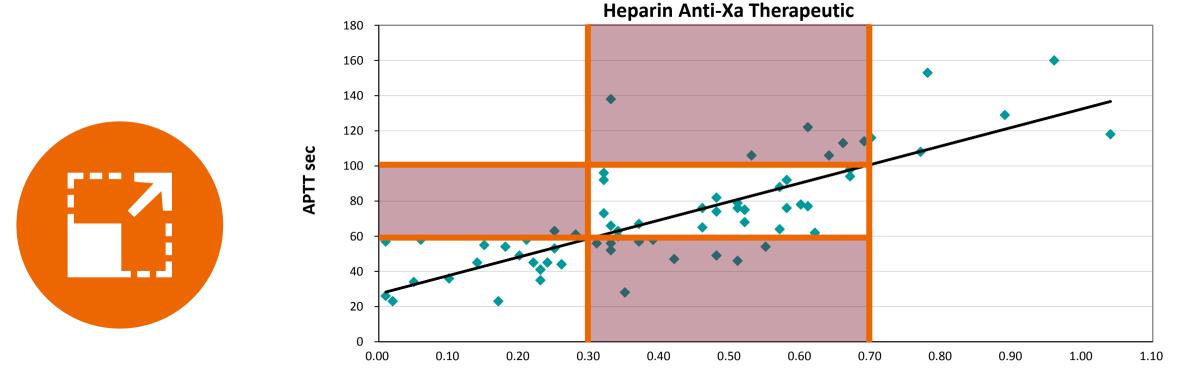
Ex vivo UFH Therapeutic Range APTT correlation vs. anti-Xa assay

Preferred method (e.g. CAP)

Collect samples from patients receiving heparin only

- Minimum 50 samples
- Normal PT
- No more than two samples from the same patient

Perform APTT and anti-Xa testing


- Samples can be frozen for anti-Xa testing—follow CLSI guidelines
- For frozen samples, repeat APTT after thawing to verify result

Plot heparin concentration vs. APTT using regression analysis

Establish APTT sec therapeutic range, equivalent to 0.3–0.7 IU/mL anti-Xa

Typical Laboratory Study APTT correlation vs. Heparin Anti-Xa assay

Heparin Xa units/mL

27% of study samples do not correlate clinically APTT vs Heparin Anti-Xa

Laboratory & Physician Comfort Zone Advantages of APTT Monitoring of UFH

SIEMENS Healthineers

- Widely used global marker for clotting
- Physician familiarity with results
- Inexpensive
- Readily available in all size laboratories
- Highly automated

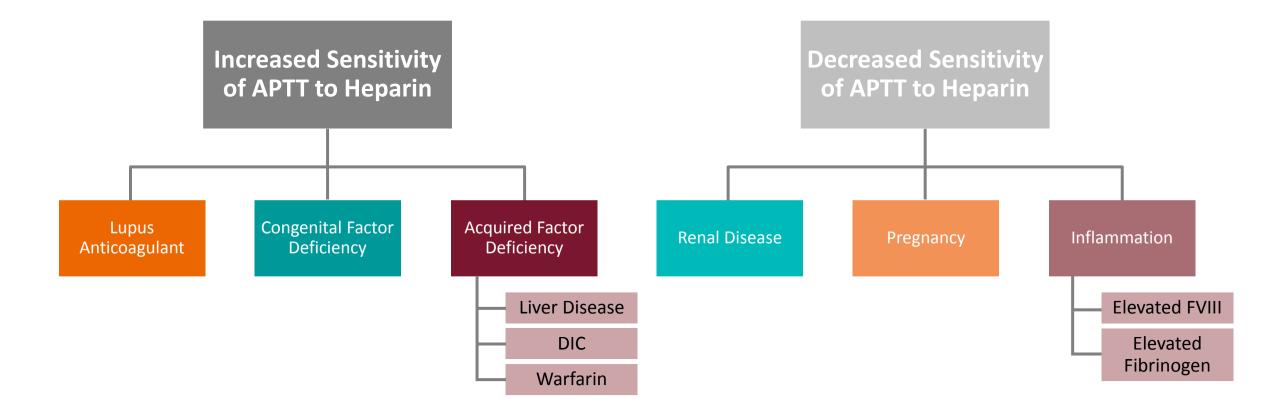
Did You Know? Disadvantages of APTT Monitoring of UFH

More frequent monitoring required

No standardization of APTT reagents between vendors or reagents Often only 50% APTT change due to heparin dose

Cannot be used to measure LMW Heparin, Fondaparinux, Direct Anti-Xa inhibitor drugs Does not measure heparin concentration

Pre-analytical Variables effect results Yearly APTT reagent lot establishment of UFH therapeutic range:


- Lot to lot changes can result in therapeuticrange change
- Time, labor for laboratory staff
- Samples difficult to obtain over full range

Author | LD-HHS **15** Unrestricted © Siemens Healthcare Diagnostics Inc., 2017

Guervil D. et al, The Annals of Pharmacotherapy. 2011 Jul/Aug;45. Vandiver J, et al. Hospital Practice. 2013 Apr;41(2).

Interference with APTT Assessment Effect of Heparin APTT Never Designed to Monitor Hepain

None of these interfere with Heparin Anti-Xa monitoring of Heparin

Heparin Anti-Xa and APTT for UFH Monitoring, James Zehnder MD Professor of Pathology and Medicine (Hematology) Stanford University, Stanford CA, May 6 2017 Author | LD-HHS **16** Unrestricted © Siemens Healthcare Diagnostics Inc., 2017

A91LD-HHS-171565-S1-4A00

Pre-analytical Variables effect APTT

Platelet Factor 4 neutralizes heparin

- traumatic venipuncture
- time plasma on cells > 1 hour
- time to assay > 4 hours
- improper centrifugation, plasma not platelet poor
- frozen sample not platelet poor plasma

Tube under fill prolongs clot assays

falsely elevated APTT result

Line draw contaminated with heparin

falsely elevated APTT result

Different Approach to Monitor UFH Why the Heparin Anti-Xa assay?

Better Patient Care

- Smoother Dose Response
- Patient Therapeutic Faster
- Stable Heparin Levels
- Improved Outcomes

Improve Workflow

- Fewer Lab Tests
- Fewer Dose Changes

Efficient

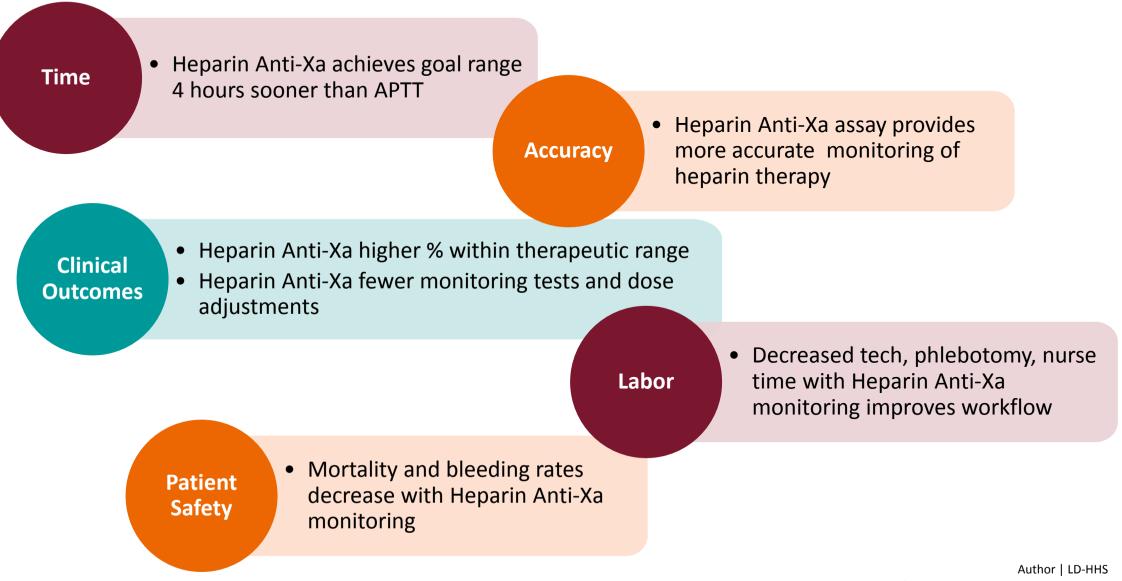
- Overall Cost Minimal Change
- Lab and Nursing Labor Savings

Advantage of Heparin Anti-Xa monitoring for Heparin

- Direct measure of heparin's functional activity
- Little or no effect based on variables of patient clinical status
- Limited effect due to pre-analytical variables
- Literature based therapeutic range, no need for laboratory to establish range

Two Studies: APTT versus Heparin Anti-Xa Monitoring for UFH

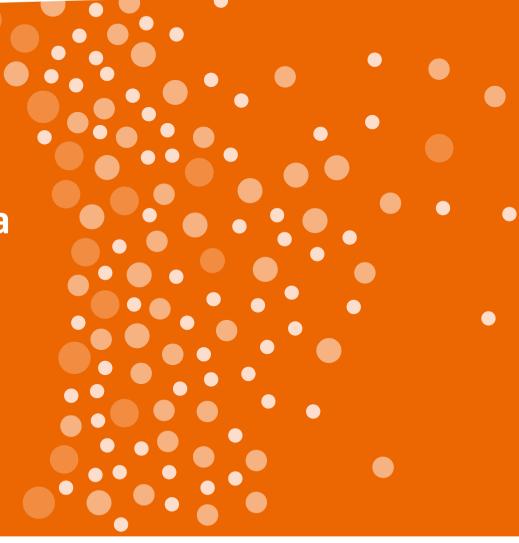
852-bed medical center; IV UFH infusion¹ May 1, 2005–April 31,2007 (APTT); 50 patients June 1, 2007–Sept 1, 2009 (Heparin Anti-Xa); 50 patients


Outcome	ΑΡΤΤ	Heparin Anti-Xa
Mean time therapeutic (hours)	48	28
Tests in goal range (%)	42	66
# of monitoring tests per 24 hours	2.8	2.5
Infusion rate changes per 24 hours	1.6	0.8
Mean hospital stay (days)	25	17
Mortality rate (%)	6	2

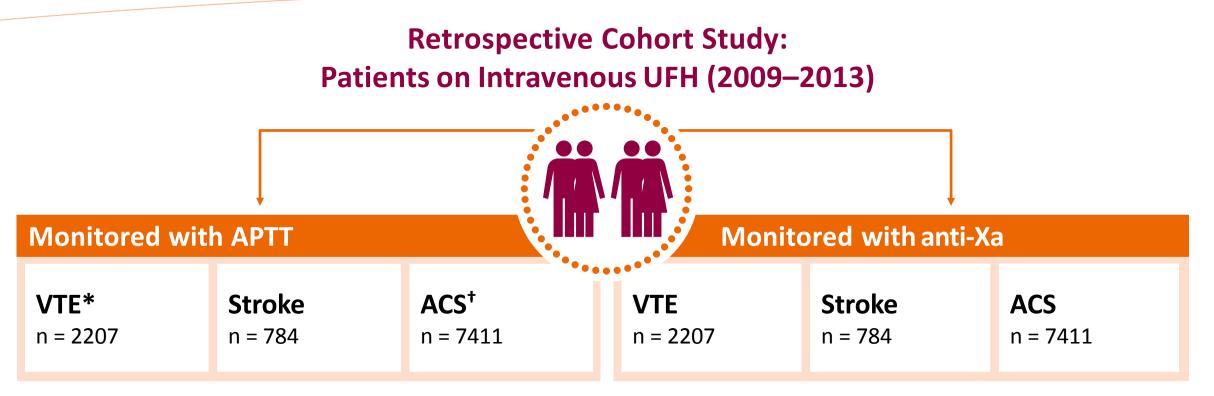
371-bed medical center; IV UFH infusion for DVT/PE² March 1, 2009–May 31, 2010 (APTT); 98 patients Aug 1, 2010–Oct 31, 2010 (Heparin Anti-Xa); 88 patients

Outcome	ΑΡΤΤ	Heparin Anti-Xa
Mean time therapeutic (hours)	39.8	22.2
Tests in goal range (%)	41	66
# of monitoring tests per 24 hours	2.73	2.08
Infusion rate changes per 24 hours	1.47	0.62
Mean hospital stay (days)	6.5	5.9
Mortality rate (%)	3	1.1

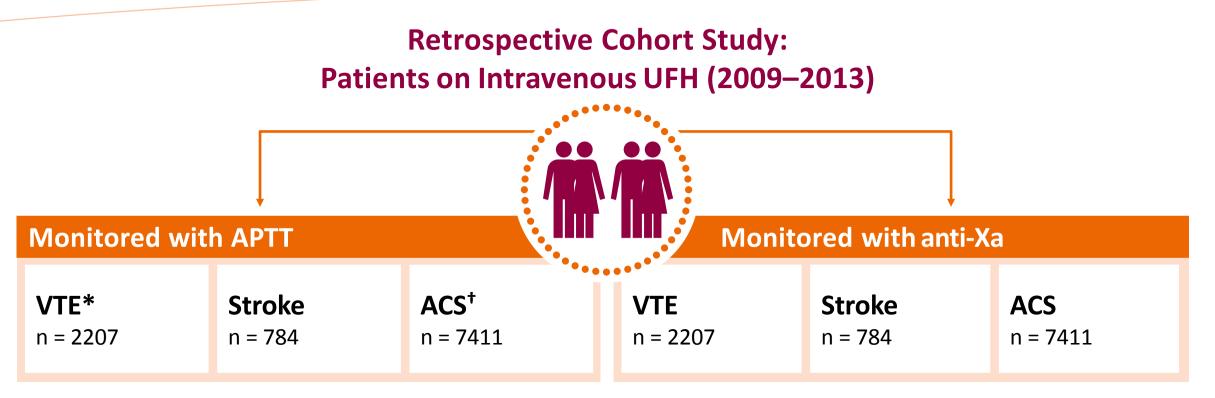
What Does Heparin Monitoring Cost Hospital?


Guervil D. et al, The Annals of Pharmacotherapy. 2011 Jul/Aug;45. Vandiver J, et al. Hospital Practice. 2013 Apr;41(2).

Author | LD-HHS 21 Unrestricted © Siemens Healthcare Diagnostics Inc., 2017


Comparison of Red Blood Cell Transfusion Utilization between anti-Xa and APTT Monitoring in Patients Receiving Unfractionated Heparin

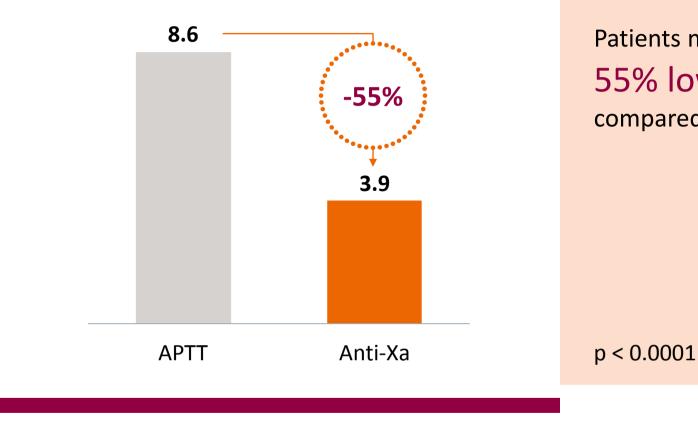
Belk KW, et al. J Thromb Haemost. 2016;14:2148-57.


- Propensity score techniques were used to match anti-Xa cases to APTT controls.
- RBC transfusions were identified from hospital billing data.
- Multivariable logistic regression was used to identify significant drivers of transfusion.
- p value <0.05 is considered significant.

Study outcome: red blood cell (RBC) transfusion rate in matched cohort

*VTE: venous thromboembolism; +ACS: acute coronary syndrome

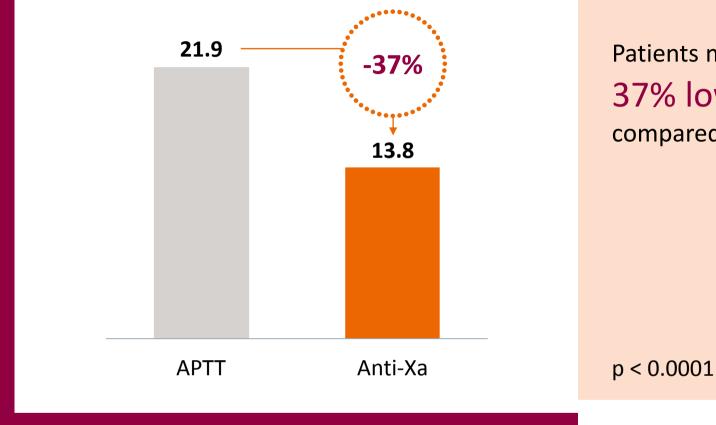
- Propensity score techniques were used to match anti-Xa cases to APTT controls.
- RBC transfusions were identified from hospital billing data.
- Multivariable logistic regression was used to identify significant drivers of transfusion.
- p value <0.05 is considered significant.


Study outcome: red blood cell (RBC) transfusion rate in matched cohort

*VTE: venous thromboembolism; +ACS: acute coronary syndrome

Reduction of RBC Transfusions in VTE

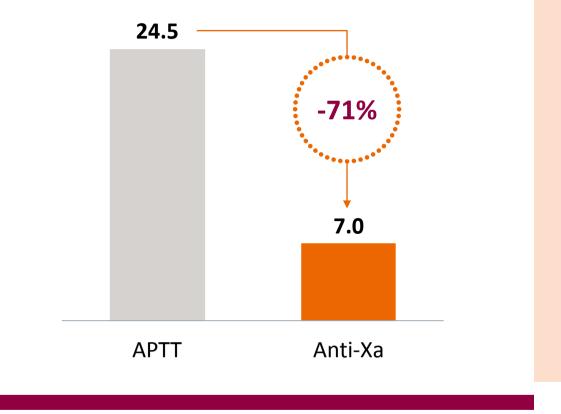
RBC transfusion % in VTE



Patients monitored with anti-Xa had a nearly 55% lower RBC transfusion rate compared to APTT-monitored patients.

Reduction of RBC Transfusions in Stroke

RBC transfusion % in stroke



Patients monitored with anti-Xa had a nearly 37% lower RBC transfusion rate compared to APTT-monitored patients.

Reduction of RBC Transfusions in ACS

RBC transfusion % in ACS

Patients monitored with anti-Xa had a 71% lower RBC transfusion rate compared to APTT-monitored patients.

p < 0.0001

Reduced Need for Blood Transfusions: Impact on Triple Aim

Quality of care

- ↓ risk of complications among hospitalized UFH treated patients
- ↓ intensity and duration of UFH treatment

Patient experience

- \downarrow length of stay in hospital
- ↓ dependence on mechanical ventilation

Cost reduction

 Estimated incremental hospitalization cost associated with RBC transfusions range from \$4408 for intraoperative transfusion to over \$10,000 for postoperative transfusions.

Healthineer

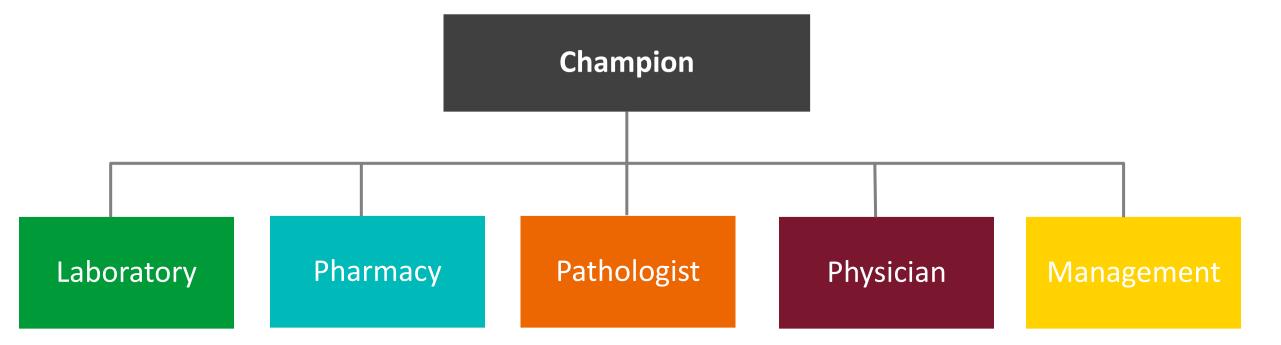
How does a Hospital convert from APTT to Heparin Anti-Xa Monitoring for UFH?

Unrestricted © Siemens Healthcare Diagnostics Inc., 2017

Why Convert to Anti-Xa Monitoring of UFH

Improve Overall Hospital Efficiency

- Decrease Laboratory Test
- Decrease Dose Adjustments by Nurse
- Improve Patient Outcomes


- More accurate results
- Consistent Therapeutic Range

Author | LD-HHS **31** Unrestricted © Siemens Healthcare Diagnostics Inc., 2017

A91LD-HHS-171565-S1-4A00

Heparin anti-Xa assay Monitoring Advantages to Laboratory and Patients

Hepar	Heparin Assay		assay Monitoring
ADVANTAGE	BENEFIT	ADVANTAGE	BENEFIT
Liquid Reagents, ready to use	Less tech time, no manual preparation	Patient therapeutic within 24 hours	Improved outcome
Hybrid Calibration Curve	Single curve for UFH & LMWH Single order from floor	Fewer laboratory tests	Improved workflow Savings material and time
Stable Calibration Curve	Time and financial savings Less tech time to perform frequent calibration	Fewer dose changes	Improved patient care Savings time, workflow improved
	Reagent savings Improved quality results	Standardized Therapeutic Range	Yearly savings in lab resources Consistent therapeutic range
Standardized Therapeutic Range	Yearly savings in lab resources Consistent therapeutic range	Patient Outcome	At 12 weeks, less VTE and minor/major bleeding Some studies exhibit improved

mortality rates

Financial Analysis Example

	MENS	
Health	ineers	•

Variable	Heparin Anti-Xa	ΑΡΤΤ	Cost	Heparin Anti-Xa	ΑΡΤΤ
mean no tests/patient/day	2.08	2.73	reagent cost / patient/day	\$ 6.07	\$ 1.75
mean no. UFH dose adjustments/patient/day	0.62	1.47	lab tech cost / patient / day @ 5 min	\$ 4.33	\$ 5.69
reagent cost / test	\$ 2.55	\$ 0.65	phlebotomy cost / patient /	\$ 2.49	\$ 3.26
lab tech cost / hr (US avg)	\$ 25.00	\$ 25.00	day @ 5 min	Υ <u></u> 2.13	Ŷ 3.20
phlebotomy cost / hr (US avg)	\$ 14.34	\$ 14.34	RN cost / patient / day @ 5 min	\$ 1.59	\$ 3.78
RN cost / hr (US avg)	\$ 30.82	\$ 30.82	Total Overall Hospital Cost	\$ 13.72	\$ 14.50

Heparin Anti-Xa reimbursement \$17.96 National Rate

APTT reimbursement

\$ 8.24 National Rate

Educate Key Departments

Discuss with decision makers to demonstrate value

Lab management: Meet with e.g., pharmacy, procurement, and physician management to present advantages of the Heparin Anti-Xa assay.

Provide proof sources.

Develop Champion to drive process.

Discuss the change with staff

Lab and Pharmacy management together present to nursing and medical director Discuss the advantages of conversion to Heparin Anti-Xa

- Improved patient outcomes
- Overall system efficiency
- Direct measurement of patient's heparin level
- Consistent therapeutic range

Training on New Heparin Protocols

Lab Personnel

• Use of reagents and anti-Xa application.

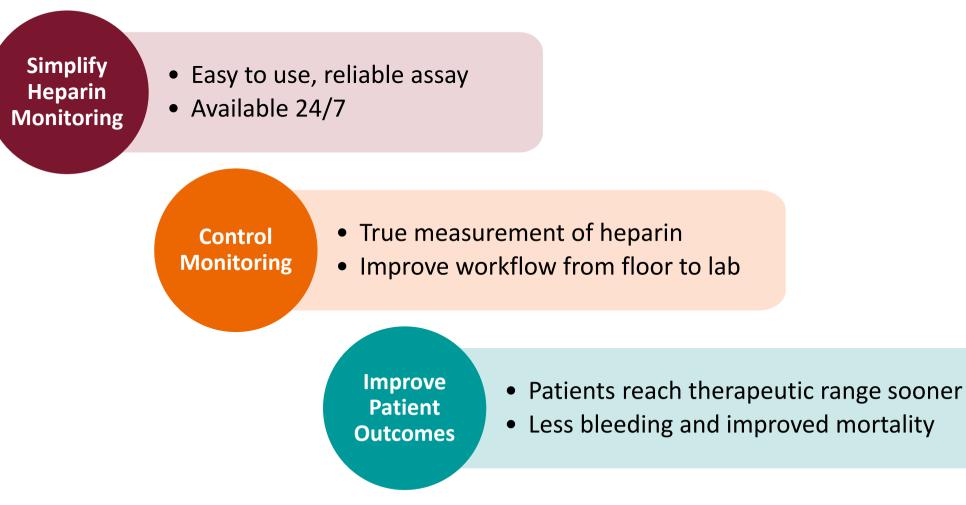
Nursing, Pharmacy and Physicians

- Explain the benefits to anti-Xa monitoring and improved outcomes.
- Educate on value interpretation and patient treatment.

Set the Stage for Anti-Xa Testing

- Set up orderable anti-Xa assay(s)
 - ✓ IT and catalogue of requirements.
 - ✓ List the most commonly used UFH and LMWH drugs from your hospital.
 - ✓ Include therapeutic ranges for both UFH and LMWH.
- Set up heparin protocol(s) based on anti-Xa monitoring.
- Inform all personnel affected by the change.

Challenges to Acceptance



- Increased lab costs for reagents; however, reduced overall costs for the medical center
- Change in existing processes
- Time to get familiar with new method

Move beyond a departmental budget and focus on improving patient care.

Heparin: Monitor with Confidence INNOVANCE Heparin

QUESTIONS?

INNOVANCE and BCS are a trademark of Siemens Healthcare Diagnostics Inc. All other product names and/or brands referred to are the property of their respective trademark holders.

Author | LD-HHS **39** Unrestricted © Siemens Healthcare Diagnostics Inc., 2017

A91LD-HHS-171565-S1-4A00